TECHNO-ECONOMIC TRANSITIONS PATHWAYS FOR DECARBONSING EUROPE'S POWER SUPPLY

Dr. Benjamin Pfluger

21 November Copenhagen

Methodology Enertile structure

- The power system optimisation model Enertile has to balance demand and supply in every hour in 2020, 2030, 2040 and 2050
- Goal: Cost minimisation, while staying below the targets defined by the global Integrated Assessment Model (IAM) IMAGE
- Very high resolution of space and time
- Scenario design by technology constraints (land available for RES plants, ...) or by costs (lower interest rates for PV)

Methodology Scenario design

	PATHWAY A	PATHWAY B
Photovoltaics		Lower interest rate for rooftopsHigher land availability
Onshore wind		Lower land availability
Offshore wind	Price similar to onshore	Lower land availability
Bioenergy	BECCS is usedTherefore more bioenergy in the power sector	
Nuclear	 Allowed, exogenously set path 	 No new capacity after 2010
ccs	• Allowed	• Excluded

Results European power sector

Results UK power sector

Results UK power sector – main frictions

Both Pathways

- No CCS in the UK
- High exports
- Strong grid expansions

Pathway A

- High costs for offshore wind energy
- UK plans to upscale gas (WP2), but model results suggest otherwise
- Nuclear power is relatively expensive and its upscaling questionable

Pathway B

- Strong expansion of wind onshore
 - Acceptance
 - Capacity building
 - · ...
- Drastic change in actors and regimes (incumbents vs. niches)

Results UK power sector

- Cost optimal diffusion of onshore wind power in Pathway B
- Costs-effective, yet currently not very likely

Conclusions

- Strategy options of Pathway A and B face different issues in different countries
 - In the UK, a rather decentralised strategy with new actors seems difficult
 - In Germany a strategy based on CCS and offshore wind does not seem plausible
- Massive grid expansions, onshore wind diffusion and increased costs are necessary in any strategy
- Cost minimisation and market liberalisation often acts as a fig leaf
- Translating techno-economic scenarios into in depth storylines reveals frictions
- The best decarbonisation strategy might be the one balancing acceptance issues best

Thank you for your attention!

Questions? pfluger@isi.franhofer.de

